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Abstract

In this paper, general relations between two different stress tensors Tf and Tg, respectively conjugate to strain

measure tensors f ðUÞ and gðUÞ are found. The strain class f ðUÞ is based on the right stretch tensor U which includes

the Seth–Hill strain tensors. The method is based on the definition of energy conjugacy and Hill�s principal axis method.

The relations are derived for the cases of distinct as well as coalescent principal stretches. As a special case, conjugate

stresses of the Seth–Hill strain measures are then more investigated in their general form. The relations are first ob-

tained in the principal axes of the tensor U. Then they are used to obtain basis free tensorial equations between different

conjugate stresses. These basis free equations between two conjugate stresses are obtained through the comparison of

the relations between their components in the principal axes, with a possible tensor expansion relation between the

stresses with unknown coefficients, the unknown coefficients to be obtained. In this regard, some relations are also

obtained for Tð0Þ which is the stress conjugate to the logarithmic strain tensor lnU.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The concept of energy conjugacy first presented by Hill (1968) states that a stress measure T is said to be

conjugate to a strain measure E if T : _EE represents power or rate of change of internal energy per unit

reference volume, _ww. That is
* Co

E-m

0020-7

doi:10.
_ww ¼ IIIr : D ¼ T : _EE ð1:1Þ
where r and D are Cauchy stress and strain rate tensors, respectively, III ¼ detðUÞ is the third invariant of

the right stretch tensor U, and ð_Þ is material time derivative operator.
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According to the spectral decomposition theorem
U ¼
X
i

kiNi � Ni ð1:2Þ
where ki and Ni are the principal stretches and corresponding orthonormal eigenvectors of the second order

tensor U, respectively.

The Seth–Hill class of strain measure tensors EðmÞ (Seth, 1964; Hill, 1968) indexed by superscript m is

defined as
EðmÞ ¼ 1

m

X
i

ðkmi � 1ÞNi � Ni ¼
1

m
ðUm � IÞ; m 6¼ 0 ð1:3aÞ

Eð0Þ ¼
X
i

lnðkiÞNi � Ni ¼ lnU ð1:3bÞ
where I is the identity tensor. Guo and Man (1992) derived explicit tensorial formulations for conjugate

stresses TðmÞ for jmjP 3, whilst earlier, the stress measure conjugate to logarithmic strain tensor lnU, had

been derived by Hoger (1987).

A more general class of strain measures based on the right stretch tensor U, was cited by Hill (1968) as
f ðUÞ ¼
X
i

f ðkiÞNi � Ni ð1:4aÞ
where f ð Þ is a smooth and strictly increasing scalar function that meets the conditions
f ð1Þ ¼ 0; f 0ð1Þ ¼ 1; and f 0ðkÞ > 0 ð1:4bÞ

Following the Hill�s principal axis method and energy conjugacy notion, a method was proposed (Farahani

and Naghdabadi, 2000) to find the relation between the components of two Seth–Hill conjugate stress

tensors in the principal axes Ni of the right stretch tensor U. In that work, assuming the index m in Eq.
(1.3a) was a positive or negative non-zero integer, the material time derivative of Seth–Hill strains for both

these cases were expanded as
_EEðmÞ ¼ 1

jmj
Xjmj
r¼1

Usðm�rÞ _UsUsUsðr�1Þ ð1:5Þ
where s ¼ signðmÞ ¼ jmj=m.
Using the Hill�s principal axis method, the stress tensor TðmÞ conjugate to the strain measure EðmÞ can be

introduced in the principal axes as
TðmÞ ¼
X
i;j

T
ðmÞ
ij Ni � Nj ð1:6Þ
Writing (1.1) for two different conjugate pairs, we have
TðmÞ : _EEðmÞ ¼ TðnÞ : _EEðnÞ ð1:7Þ

Noting that UU�1 ¼ I, and

_
U�1U�1 ¼ �U�1 _UUU�1, and substituting (1.5) and (1.6) in (1.7) for non-coalescent

stretches resulted in
T
ðnÞ
ii ¼ T

ðmÞ
ii km�n

i

T
ðnÞ
ij ¼ n

m
T

ðnÞ
ij

kmi � kmj
kni � knj

; i 6¼ j

8><
>: ð1:8a;bÞ
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where m and n may be positive and negative non-zero integers. The case of coalescent principal stretches

was considered in that work as well.

The main aim of this paper is to

1. Extend our previous work to obtain general equations similar to (1.8), for the stresses conjugate to two

wide range of strain measures

(a) Strain measures presented in (1.3), for every real index (m), including zero which corresponds to the

logarithmic strain lnðUÞ.
(b) Strain measures with the more general form f ðUÞ presented in (1.4).

2. Obtain basis free tensor equations between two different stress measures, using the relation between their

components in the principal axes.

Hence, some equations will be derived for the principal components of conjugate stresses for not only the

Seth–Hill strain measures including logarithmic strain, but also for all the strain measures in the form of

Eq. (1.4). Using these relations, several basis free equalities are obtained, some of which have been obtained

already through a different approach.

In this work, the index notation is not used unless stated otherwise. Second order tensors are in bold

capitals and fourth order tensors are in italic bold capitals.

In what follows, two different approaches are adopted to obtain the formulas for the principal com-

ponents of the stresses. The method presented in Section 3 is based on the arbitrariness of Lagrangian spin
tensor components, which is less general since there are instances that some of the components of the spin

tensor are not well defined. The second one presented in Section 4 is based on the tensor algebra and is quite

general and covers all cases.
2. Basic relations

Consider a deforming body, with F denoting the deformation gradient at a point inside it with

detðFÞ > 0. The polar decomposition theorem states that F may uniquely be decomposed as
F ¼ RU ¼ VR ð2:1Þ
where U and V are the right and left stretch tensors, respectively, and are both positive definite symmetric

tensors, and R is a proper orthogonal rotation tensor. Here, Ni and ni are the principal axes or eigenvectors
of U and V, respectively, and
ni ¼ RNi ð2:2Þ
Therefore, Eq. (2.1) states that a material finite deformation can be viewed as a pure stretch along a specific

orthogonal Lagrangian triad Ni, followed by a rigid rotation of this orthogonal triad into another specific
orthogonal Eulerian triad ni, or conversely, a rigid rotation followed by a pure stretch.

The eigenvalues of U and V called principal stretches, are denoted by k1, k2 and k3. The principal in-

variants of U and V are
I ¼ k1 þ k2 þ k3
II ¼ k1k2 þ k2k3 þ k3k1
III ¼ k1k2k3

ð2:3Þ
The Cayley–Hamilton theorem declares that every tensor satisfies its own characteristic equation. That is,
for the second order tensor U
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U3 � IU2 þ IIU� IIII ¼ 0 ð2:4Þ

During the deformation, the continually changing Lagrangian and Eulerian triads and the rigid rotation of

the material will have the spins XL, XE, and XR. Some basic relations between these spin tensors are

(Mehrabadi and Nemat-Nasse, 1987)
_NNi ¼ XLNi ð2:5Þ

_nni ¼ XEni ð2:6Þ

_RR ¼ XRR ð2:7Þ

In these relations, X�s are anti-symmetric spin tensors which are related through
XE ¼ XR þ RXLRT ð2:8Þ

According to (2.5), the material time derivative of (1.2) and (1.4) can be written as
_UU ¼
X
i

_kkiNi � Ni þXLU�UXL ð2:9Þ

_ff ðUÞ ¼
X
i

_kkif 0ðkiÞNi � Ni þXLf ðUÞ � f ðUÞXL ð2:10Þ
where ð Þ0 means derivative with respect to k.
Some of the well-known relations of the Seth–Hill strain measures with their conjugate stresses are as

follows (Hill, 1978; Guo and Dubey, 1984)

(i) Green�s strain and second Piola–Kirchhoff stress tensors
Eð

Eð

Eð

Eð

Tð
2Þ ¼ 1

2
ðU2 � IÞ; Tð2Þ ¼ IIIF�1rF�T ð2:11Þ
(ii) Nominal strain and Jaumann stress tensors, alternatively called Biot strain and stress tensors (Ogden,

1984)
1Þ ¼ U� I; Tð1Þ ¼ 1
2
ðTð2ÞUþUTð2ÞÞ ð2:12Þ
(iii) The conjugate pairs Tð�1Þ and Eð�1Þ (Guo and Man, 1992)
�1Þ ¼ I�U�1; Tð�1Þ ¼ 1
2
ðTð�2ÞU�1 þU�1Tð�2ÞÞ ð2:13Þ
(iv) Almansi strain and the weighted convected stress tensors
�2Þ ¼ 1

2
ðI�U�2Þ; Tð�2Þ ¼ IIIFTrF ð2:14Þ
(v) Logarithmic strain Eð0Þ ¼ lnðUÞ and its conjugate Tð0Þ (Hoger, 1987).

(vi) Seth–Hill conjugate stresses with opposite index signs (Farahani and Naghdabadi, 2000)
�nÞ ¼ UnTðnÞUn ð2:15Þ
3. Relations between conjugate stresses of the strain measures f (U)

In this section, the relations between the stress tensors energetically conjugate to f ðUÞ defined in (1.4),
are obtained. Then, the results will be used to find similar equations for the stresses conjugate to the Seth–

Hill strain tensors and the logarithmic strain lnU.
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Considering a deforming body in the current configuration, let the stress measure conjugate to f ðUÞ be
Tf . Writing the stress tensor Tf in the orthonormal basis Ni, we have
Tf ¼
X
ij

Tf
ijNi � Nj ð3:1Þ
where Tf
ij are the principal components of the tensor Tf . According to (1.1), the power or the rate of change

of internal energy per unit reference volume of a deforming body can be written in terms of two different

strain tensors f ðUÞ and gðUÞ, and their conjugate stresses Tf and Tg
Tf : _ff ðUÞ ¼ Tg : _ggðUÞ ð3:2Þ
where gð Þ is also a smooth function which satisfies the same conditions as f ð Þ does. Substitution of (2.10)

and (3.1) into (3.2) yields
X
ij

Tf
ijNi

 
� Nj

!
:
X
i

_kkif 0ðkiÞNi

� 
� Ni

�
þ XLf ðUÞ � f ðUÞXL

!

¼
X
ij

Tg
ijNi

 
� Nj

!
:
X
i

_kkig0ðkiÞNi

� 
� Ni

�
þXLgðUÞ � gðUÞXL

!
ð3:3Þ
Consider the spin tensor XL presented in the principal axes Ni such that
XL ¼
X
ij

XL
ijNi � Nj ð3:4Þ
All the tensors involved in (3.3) are now defined in the principal axes. Therefore, substituting (1.4) and (3.4)
into (3.3) and rearranging the equation result in
X

i

_kki f 0ðkiÞTf
ii

�n
� g0ðkiÞTg

ii

�o
þ
X
ij

XL
ij Tf

ij f ðkjÞ
�nn

� f ðkiÞ
�
� Tg

ij gðkjÞ
�

� gðkiÞ
�oo

¼ 0 ð3:5Þ
Since in Eq. (3.5), the stretch rates _kki and spin tensor components XL
ij are arbitrary, their coefficients must

be equal to zero.

3.1. The case of non-coalescent principal stretches

By setting the coefficients in (3.5) equal to zero, we arrive at the following general equalities
Tf
ii ¼

g0ðkiÞ
f 0ðkiÞ

Tg
ii; i ¼ 1; 2; 3

Tf
ij ¼

gðkiÞ � gðkjÞ
f ðkiÞ � f ðkjÞ

Tg
ij; i 6¼ j

8>><
>>: ð3:6a;bÞ
Eqs. (3.6) give the relation between the principal components of two different conjugate stress tensors.

These equations will later be used to obtain bases free equations for several stress tensors. Eq. (3.6b) is

obviously only for the case of non-coalescent eigen stretches.

It is noted that this approach to obtain Eqs. (3.6) is acceptable only when the Lagrangian spin tensor XL

is well defined. However, there are situations where some of the components of XL tend to infinity in an

instant at the boundary of two adjacent intervals where U has a different number of distinct eigenvalues

over the two intervals (Guo et al., 1992). In this case where XL is not well defined, a different approach can
be used which is explained in Section 4 of the paper.
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3.2. The case of two coalescent principal stretches

From Eq. (3.6) it is observed that coincidence of principal stretches just affects the relation between the

off-diagonal members of the stress components. Therefore, for two coalescent principal stretches, Eq. (3.6b)
can be modified as
Tf
ij ¼ lim

ki!kj

gðkiÞ � gðkjÞ
f ðkiÞ � f ðkjÞ

� �
Tg

ij ¼
g0ðkiÞ
f 0ðkiÞ

Tg
ij; i 6¼ j ð3:7Þ
Hence, for two coalescent principal stretches we arrive at
Tf
ij ¼

g0ðkiÞ
f 0ðkiÞ

Tg
ij; ði ¼ jÞ or ðki ¼ kjÞ

Tf
ij ¼

gðkiÞ � gðkjÞ
f ðkiÞ � f ðkjÞ

Tg
ij; ði 6¼ jÞ & ðki 6¼ kjÞ

8>><
>>: ð3:8a;bÞ
3.3. The case of three coalescent principal stretches

Similarly, using the same method of Section (3.2), it is concluded that for three coalescent principal

stretches, we have
Tf
ij

�
¼ g0ðkÞ

f 0ðkÞT
g
ij; ðk1 ¼ k2 ¼ k3 ¼ kÞ ð3:9Þ
That is, in the case of three coalescent principal stretches, all the stress tensors conjugate to the strains in the

form of f ðUÞ defined in (1.4) are coaxial. Eqs. (3.6–3.9) will later be used for the special case of the Seth–

Hill satin tensors.
4. General proof for the relation between conjugate stresses

The general proof for Eqs. (3.6) is briefly explained in this section. Index notation is not used in this

section unless stated otherwise. Fourth order tensors are in bold italic capitals. The space of all three

dimensional real vectors is denoted by Vect, and the space of all second order tensors which are linear
transformation from Vect into Vect is called Lin. Furthermore, the fourth order tensors constitutes the

space of all linear mappings of Lin into itself, called Lin. The double contraction of a fourth tensor D 2 Lin

and a second order tensor U 2 Lin in index notation is defined as
D : U ¼ DijklUjkei � el ð4:1Þ

where ei�s are the basis vectors. According to Truesdel and Noll (1965), Gurkin (1981), and Silhavy (1997),

derivatives can be identified as linear transformations. The derivatives of a scalar valued tensor function

aðUÞ : Lin ! IR, and a tensor function f ðUÞ : Lin ! Lin in index notation are defined respectively as
oaðUÞ
oU

¼ oUaðUÞ ¼ oaðUÞ
oUij

ei � ej ð4:2Þ

of ðUÞ
oU

¼ oUf ðUÞ ¼ ofijðUÞ
oUkl

ei � ek � el � ej ð4:3Þ
which show that (4.2) and (4.3) are second and fourth order tensors, respectively. Using the chain rule for

the differentiation in tensor derivatives, we have
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df ðUÞ
dt

¼ of ðUÞ
oU

:
dU

dt
ð4:4Þ
Using the spectral decomposition, f ðUÞ can be expanded as
f ðUÞ ¼
X
i

f ðkiÞNi � Ni ð4:5Þ
Assuming that the scalar function f is continuously differentiable, according to Prepositions 1.2.6 or 8.1.9

thoroughly explained by Silhavy (1997), we can write
oUf ðUÞ : Tf ¼
X
i;j

HijT
f
ijNi � Nj ð4:6Þ
where Tf
ij are the components of Tf in the principal axes of U as defined in (3.1). The components Hij are

independent of Tf obtained as
Hij ¼
f ðkiÞ � f ðkjÞ

ki � kj
; ki 6¼ kj

f 0ðkiÞ; ki ¼ kj

8<
: ð4:7Þ
Recalling Eqs. (3.2) and (4.4), we have
_ff ðUÞ : Tf ¼ _ggðUÞ : Tg ð4:8Þ

of ðUÞ
oU

:
dU

dt

� �
: Tf ¼ ogðUÞ

oU
:
dU

dt

� �
: Tg ð4:9Þ
Because of symmetry of the tensors, it is easy to show that dU=dt is commutative in (4.8) as
of ðUÞ
oU

: Tf

� �
:
dU

dt
¼ ogðUÞ

oU
: Tg

� �
:
dU

dt
ð4:10Þ
Hence, since (4.10) holds for every tensor U, it is concluded that
of ðUÞ
oU

: Tf ¼ ogðUÞ
oU

: Tg ð4:11Þ
Therefore, substitution of (4.6) and (4.7) into (4.11), it is concluded that
Tf
ij ¼

g0ðkiÞ
f 0ðkiÞ

Tg
ij; ði ¼ jÞ or ðki ¼ kjÞ

Tf
ij ¼

gðkiÞ � gðkjÞ
f ðkiÞ � f ðkjÞ

Tg
ij; ði 6¼ jÞ & ðki 6¼ kjÞ

8>><
>>: ð4:12Þ
which is the same as what was obtained earlier in (3.6) and (3.8).
5. Conjugate stresses of general Seth–Hill strain tensors E(a)

5.1. The case of non-zero indices

Recalling Eqs. (1.3), we consider the strain measure EðaÞ and its conjugate stress TðaÞ, where the index
number a is not necessarily an integer and can be any non-zero real number. Using Eqs. (1.4), for two

arbitrary non-zero real indices a and b we have
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f ðkÞ ¼ 1

a
ðka � 1Þ; gðkÞ ¼ 1

b
ðkb � 1Þ ð5:1Þ
Making use of (3.6) or (4.12), it is concluded that
T
ðaÞ
ii ¼ kb�a

i T
ðbÞ
ii ; i ¼ 1; 2; 3

T
ðaÞ
ij ¼ a

b

kbi � kbj
kai � kaj

T
ðbÞ
ij ; i 6¼ j

8>><
>>: ð5:2a;bÞ
Eqs. (5.2) is exactly the same as (1.8) which had been developed earlier only for integer indices.

5.2. The case of zero index or the logarithmic strain ln (U)

To find similar relations between Tð0Þ, the conjugate stress of the logarithmic strain lnðUÞ, and other

Seth–Hill strain conjugates, we have
f ðkÞ ¼ lnðkÞ; gðkÞ ¼ 1

a
ðka � 1Þ ð5:3Þ
Again, by making use of (3.6), we arrive at
T
ð0Þ
ii ¼ kaiT

ðaÞ
ii ; i ¼ 1; 2; 3

T
ð0Þ
ij ¼ 1

a

kai � kaj

ln
ki
kj

� �T
ðaÞ
ij ; i 6¼ j

8>>><
>>>:

ð5:4a; bÞ
Multiplying (5.4) by Ni � Nj and summing over i and j, we arrive at the following basis free tensor equation
Tð0ÞlnU� lnUTð0Þ ¼ TðaÞEðaÞ � EðaÞTðaÞ ð5:5Þ
It is noted that Hill (1978) obtained Eq. (5.5) for every conjugate stress and strain pairs.

5.3. The case of equal principal stretches

For the case of three coalescent principal stretches where U ¼ kI and k1 ¼ k2 ¼ k3 ¼ k, from (3.9) it is
concluded that
T
ð0Þ
ij ¼ kaTðaÞ

ij ð5:6Þ
or in the basis free form
TðaÞ ¼ kTðaþ1Þ ð5:7Þ
6. Application to basis free tensor equations

The application of the above formulae in deriving basis free tensor equations is presented here which
may be used to obtain basis free relations between any two different stress tensors conjugate to the class of

strains of the form (1.4).
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6.1. The stress T(0) conjugate to the logarithmic strain lnU , and T(1)

The expression for the stress conjugate to logarithmic strain has been already obtained in previous works

(Hoger, 1987). Here, we obtain a basis free relation for it through another approach. A basis free relation
will be obtained between Tð0Þ the stress conjugate to the logarithmic strain lnU, and the Biot stress tensor

Tð1Þ. From (5.4) we can write
T
ð0Þ
ii ¼ kiT

ð1Þ
ii ; i ¼ 1; 2; 3

T
ð0Þ
ij ¼ ki � kj

ln
ki
kj

� �T
ð1Þ
ij ; i 6¼ j

8>>><
>>>:

ð6:1a;bÞ
We can expand Tð0Þ in a symmetric basis free form in terms of Tð1Þ
Tð0Þ ¼ A1T
ð1Þ þ A2 UTð1Þ�

þ Tð1ÞU
�
þ A3UTð1ÞUþ A4 U2Tð1Þ�

þ Tð1ÞU2
�
þ A5U

2Tð1ÞU2

þ A6 U2Tð1ÞU
�

þUTð1ÞU2
�

ð6:2Þ
It is noted that (6.2) is not the only possible expansion of Tð0Þ in terms of Tð1Þ. Since (6.2) is a basis free

equation, the coefficientsAi can be obtained in any coordinates.Wemay obtain the coefficients Ai especially in

the principal axes, whereU is diagonal and is expressed only in terms of stretches, by comparing (6.1) and (6.2)
on the principal axes. This requires the solution of a 6 · 6 system of parametric equations, and rearranging the

obtained coefficients in terms of the three invariants. Hence, the coefficients of (6.2) may be presented as
A1 ¼
2III
L

X
i

ki

ln
kj
kk

þ III
L2

ð3I � III þ II � I2 � 4II2Þ ð6:3aÞ

A2 ¼
�1

L

X
i

III þ kiII

ln
kj
kk

þ III
L2

ð9III � 7II � I þ 2I3Þ ð6:3bÞ

A3 ¼
2

L

X
i

II þ k2i

ln
kj
kk

þ 1

L2
ðII � I � IIIÞðI2 � 3IIÞ ð6:3cÞ

A4 ¼
1

L

X
i

II � kjkk

ln
kj
kk

þ 2III
L2

ðI2 � 3IIÞ ð6:3dÞ

A5 ¼
2

L

X
i

1

ln
kj
kk

þ 1

L2
ðII � I � 9IIIÞ ð6:3eÞ

A6 ¼
�1

L

X
i

I þ ki

ln
kj
kk

þ 1

L2
ð3III � I þ 2II2 � I2 � IIÞ ð6:3fÞ
where i ¼ 1, 2, 3, and
L ¼ ðk1 � k2Þðk2 � k3Þðk3 � k1Þ ð6:3gÞ

In the Eqs. (6.3), j and k are set by permutation.
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Writing Tð1Þ in terms of Tð0Þ in a basis free form gives rise to more complicated coefficients. For this

purpose we similarly expand Tð1Þ as
Tð1Þ ¼ B1T
ð0Þ þ B2 UTð0Þ�

þ Tð0ÞU
�
þ B3UTð0ÞUþ B4 U2Tð0Þ�

þ Tð0ÞU2
�
þ B5U

2Tð0ÞU2

þ B6 U2Tð0ÞU
�

þUTð0ÞU2
�

ð6:4Þ
From (6.1) we have
T
ð1Þ
ii ¼ T

ð0Þ
ii

ki
; i ¼ 1; 2; 3

T
ð1Þ
ij ¼

ln
ki
kj

� �
ki � kj

T
ð0Þ
ij ; i 6¼ j

8>>>>><
>>>>>:

ð6:5a;bÞ
Again comparing (6.4) and (6.5) on the principal axes, solving the resulted 6 · 6 system of equation for Bi,

and rearranging them in terms of invariants of U, we arrive at
B1 ¼
2III
L

X
i

ki ln
kj
kk

ðkj � kkÞ2
� 1

III � L2
3I3 � II � III
�

� I2 � II3 þ I2 � III2 � 14I � II2 � III þ 4II4 þ 15II � III2
�

ð6:6aÞ
B2 ¼
�1

L

X
i

ðkiII þ IIIÞ ln kj
kk

ðkj � kkÞ2
þ 1

III � L2
2I4 � III
�

� I3 � II2 � 9I2 � II � III þ 4IðII3 þ 3III2Þ � 4II2 � III
�

ð6:6bÞ
B3 ¼
2

L

X
i

ðk2i þ IIÞ ln kj
kk

ðkj � kkÞ2
þ 1

III � L2
ðI � II � IIIÞðI3 þ 9III � 4I � IIÞ ð6:6cÞ
B4 ¼
1

L

X
i

ðII � kjkkÞ ln
kj
kk

ðkj � kkÞ2
� 1

III � L2
2I3 � III
�

� I2 � II2 � 10I � II � III þ 4II3 þ 9III2
�

ð6:6dÞ
B5 ¼
2

L

X
i

ln
kj
kk

ðkj � kkÞ2
� 1

III � L2
ðI2 � II � 4II2 þ 3I � IIIÞ ð6:6eÞ
B6 ¼
�1

L

X
i

ðI þ kiÞ ln
kj
kk

ðkj � kkÞ2
� 1

III � L2
I3 � II
�

þ I2 � III � 4I � II2 þ 6II � III
�

ð6:6fÞ
where L is defined in (6.3g).
For the case of coalescent principal stretches, the coefficients take simpler forms and we skip this issue

for the sake of brevity.
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6.2. The Biot stress T(1) conjugate to the nominal strain (U � I), and T(2)

The expression for the Biot stress Tð1Þ in terms of second Piola–Kirchhoff stress tensor Tð2Þ is quite well

known. However, it will be obtained here again. From (5.2) we have
T
ð1Þ
ii ¼ kiT

ð2Þ
ii ; i ¼ 1; 2; 3

T
ð1Þ
ij ¼ 1

2

k2i � k2j
ki � kj

T
ð2Þ
ij ; i 6¼ j

8><
>: ð6:7a;bÞ
Again, writing Tð1Þ in terms of Tð2Þ in a basis free form, we have
Tð1Þ ¼ A1T
ð2Þ þ A2ðUTð2Þ þ Tð2ÞUÞ þ A3UTð2ÞUþ A4 U2Tð2Þ�

þ Tð2ÞU2
�
þ A5U

2Tð2ÞU2

þ A6 U2Tð2ÞU
�

þUTð2ÞU2
�

ð6:8Þ

Comparing (6.7) and (6.8) in the principal axes, and solving for the unknowns Ai, we get
A1 ¼ A3 ¼ A4 ¼ A5 ¼ A6 ¼ 0; A2 ¼
1

2
ð6:9Þ
which is exactly as (2.12), as expected. If we reciprocally write Tð2Þ in terms of Tð1Þ
Tð2Þ ¼ B1T
ð1Þ þ B2 UTð1Þ�

þ Tð2ÞU
�
þ B3UTð1ÞUþ B4 U2Tð1Þ�

þ Tð1ÞU2
�
þ B5U

2Tð1ÞU2

þ B6 U2Tð1ÞU
�

þUTð1ÞU2
�

ð6:10Þ

following the same procedure, we arrive at
B1 ¼
I2 � III þ I � II2 � II � III

IIIðI � II � IIIÞ ð6:11aÞ

B2 ¼
�I2 � II

IIIðI � II � IIIÞ ð6:11bÞ

B3 ¼
I3 þ III

IIIðI � II � IIIÞ ð6:11cÞ

B4 ¼
1

III
ð6:11dÞ

B5 ¼
I

IIIðI � II � IIIÞ ð6:11eÞ

B6 ¼
�I2

IIIðI � II � IIIÞ ð6:11fÞ
6.3. The stress tensor T(m) conjugate to the strain (1=m) (Um � I), and T(1)

Relations can be easily obtained for every stress tensor TðmÞ in a similar manner. However, for general m,
the relations become more complicated and it is difficult to write them in terms of the three invariants, but

still possible to write them in terms of stretches in a close form. As an example, the relations will be ob-

tained for m ¼ 3. Writing Tð3Þ in terms of Tð1Þ in the basis free form, we have
Tð3Þ ¼ A1T
ð1Þ þ A2 UTð1Þ�

þ Tð1ÞU
�
þ A3UTð1ÞUþ A4 U2Tð1Þ�

þ Tð1ÞU2
�
þ A5U

2Tð1ÞU2

þ A6 U2Tð1ÞU
�

þUTð1ÞU2
�

ð6:12Þ
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Comparing (5.2) for a ¼ 3 and b ¼ 1 with (6.12) in the principal axis, and solve for Ai, result in
A1 ¼
�1

C
2I4 � III2
�

� I3 � II2 � III þ I2 � IIðII3 � 4III2Þ þ II2ð2III2 � II3Þ
�

ð6:13aÞ

A2 ¼
1

C
I3ðII3
�

þ III2Þ � 2I2 � II2 � III � I � IIðII3 þ III2Þ þ II3 � III
�

ð6:13bÞ

A3 ¼
�I
C

I4 � III
�

þ I3 � II2 � 4I2 � II � III þ Ið2III2 � II3Þ þ 2II2 � III
�

ð6:13cÞ

A4 ¼
�1

C
I2ðII3
�

� III2Þ � I � II2 � III � II4
�

ð6:13dÞ

A5 ¼
�1

C
I3 � III
�

þ I2 � II2 � 2I � II � III � II3
�

ð6:13eÞ

A6 ¼
1

C
I4 � III
�

þ I3 � II2 � 3I2 � II � III � I � II3 þ I2 � III
�

ð6:13fÞ
where
C ¼ III2 I3 � III
�

� I2 � II2 þ II3
�

ð6:13gÞ
Expressions for Tð3Þ was obtained by Guo and Man (1992) through a different mathematical procedures.

6.4. The case of jaj < 1

Similar relations may be obtained for the stresses with indices less than 1. As an example for a ¼ 1
2
, from

(5.2) we have
T
ð1=2Þ
ij ¼ 1

2
k1=2i

�
þ k1=2j

�
T

ð1Þ
ij ð6:14Þ
Multiplying (6.14) by Ni � Nj and summing over i and j result in
Tð1=2Þ ¼ 1

2
U1=2Tð1Þ�

þ Tð1ÞU1=2
�

ð6:15aÞ
or in general, for every a
TðaÞ ¼ 1

2
UaTð2aÞ�

þ Tð2aÞUa
�

ð6:15bÞ
Alternatively, we can write Tð1=2Þ in a basis free form as
Tð1=2Þ ¼ A1T
ð1Þ þ A2 UTð1Þ�

þ Tð1ÞU
�
þ A3UTð1ÞUþ A4 U2Tð1Þ�

þ Tð1ÞU2
�
þ A5U

2Tð1ÞU2

þ A6 U2Tð1ÞU
�

þUTð1ÞU2
�

ð6:16Þ
from comparison of which with (6.14) in the principal axes of U, we can obtain Ai as
A3 ¼ A5 ¼ A6 ¼ 0
and
A1 ¼
III1=2I1=2

I1=2II1=2 � III1=2
ð6:17aÞ
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A2 ¼
I21=2 � II1=2

2 I1=2II1=2 � III1=2
� � ð6:17bÞ
A4 ¼
�1

2 I1=2II1=2 � III1=2
� � ð6:17cÞ
where I1=2, II1=2, and III1=2 are the invariants of U1=2.
Finally, it is noted that the tensor expansion forms like (6.2), (6.4), (6.8) etc., are not unique and the

unknown coefficients for all forms of expansion may be obtained in a similar manner.
7. Conclusions

In this work, general relations are found between two different stress tensors, conjugate to a class of

strain measure tensors f ðUÞ defined in (1.4). The approach is based on the definition of Hill�s principal

axis method and energy conjugacy notion. The equations are first obtained between the principal com-

ponents of the stresses based on two approaches explained in Sections 3 and 4, the latter of which, based
on tensor algebra is quite general. These equations are then applied to find relations between conjugate

stresses of the Seth–Hill strain tensors EðmÞ as a subset of f ðUÞ. The derived equations hold not only for

integer but also for real indices m including zero, which corresponds to the logarithmic strain tensor lnðUÞ
and its conjugate stress Tð0Þ. The equalities are obtained for distinct as well as coalescent principal

stretches. Using the relations obtained for the principal components of conjugate stresses, basis free

equations are then derived between several conjugate stresses. The basis free tensor equations between

two conjugate stresses is derived through the comparison of the relations between their components in the

principal axes with a possible tensorial relation between the stresses expanded in the principal axes where
U is diagonal.
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