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Abstract

In this paper, general relations between two different stress tensors T' and TE, respectively conjugate to strain
measure tensors f(U) and g(U) are found. The strain class f(U) is based on the right stretch tensor U which includes
the Seth—Hill strain tensors. The method is based on the definition of energy conjugacy and Hill’s principal axis method.
The relations are derived for the cases of distinct as well as coalescent principal stretches. As a special case, conjugate
stresses of the Seth—Hill strain measures are then more investigated in their general form. The relations are first ob-
tained in the principal axes of the tensor U. Then they are used to obtain basis free tensorial equations between different
conjugate stresses. These basis free equations between two conjugate stresses are obtained through the comparison of
the relations between their components in the principal axes, with a possible tensor expansion relation between the
stresses with unknown coefficients, the unknown coefficients to be obtained. In this regard, some relations are also
obtained for T which is the stress conjugate to the logarithmic strain tensor InU.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The concept of energy conjugacy first presented by Hill (1968) states that a stress measure T is said to be
conjugate to a strain measure E if T : E represents power or rate of change of internal energy per unit
reference volume, w. That is

w=1Ile:D=T:E (1.1)

where ¢ and D are Cauchy stress and strain rate tensors, respectively, I/ = det(U) is the third invariant of
the right stretch tensor U, and (') is material time derivative operator.
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According to the spectral decomposition theorem

U=> LN:®N, (1.2)

where /; and N, are the principal stretches and corresponding orthonormal eigenvectors of the second order
tensor U, respectively.

The Seth—Hill class of strain measure tensors E™ (Seth, 1964; Hill, 1968) indexed by superscript m is
defined as

1 1

E™ ==Y "("-1)N;,®N; =—(U" - I); 0 1.3
mEj(, INi@N; = ( ) m# (1.3a)

EY =3 " In(2)N; @ N; = InU (1.3b)

where I is the identity tensor. Guo and Man (1992) derived explicit tensorial formulations for conjugate
stresses T™ for |m| = 3, whilst earlier, the stress measure conjugate to logarithmic strain tensor InU, had
been derived by Hoger (1987).

A more general class of strain measures based on the right stretch tensor U, was cited by Hill (1968) as

f(U) = Zf(7~i)Ni ® N; (1.4a)

where f() is a smooth and strictly increasing scalar function that meets the conditions
f()y=0, f(1)=1, and f'(1)>0 (1.4b)

Following the Hill’s principal axis method and energy conjugacy notion, a method was proposed (Farahani
and Naghdabadi, 2000) to find the relation between the components of two Seth—Hill conjugate stress
tensors in the principal axes N; of the right stretch tensor U. In that work, assuming the index m in Eq.
(1.3a) was a positive or negative non-zero integer, the material time derivative of Seth—Hill strains for both
these cases were expanded as

|m|

E(m) _ Z Ux(mfr)UsUs(rfl) (1 5)
r=1

~ |m|

where s = sign(m) = |m|/m.
Using the Hill’s principal axis method, the stress tensor T conjugate to the strain measure E™ can be
introduced in the principal axes as

T — ZTE;”)]\Q(@]\G (1.6)
ij

Writing (1.1) for two different conjugate pairs, we have
T E" =T" . E" (1.7)

Noting that UU™' =1, and U= —U'0U™!, and substituting (1.5) and (1.6) in (1.7) for non-coalescent
stretches resulted in

e (1.8a,b)
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where m and n may be positive and negative non-zero integers. The case of coalescent principal stretches
was considered in that work as well.
The main aim of this paper is to

1. Extend our previous work to obtain general equations similar to (1.8), for the stresses conjugate to two
wide range of strain measures
(a) Strain measures presented in (1.3), for every real index (m), including zero which corresponds to the
logarithmic strain In(U).
(b) Strain measures with the more general form f(U) presented in (1.4).
2. Obtain basis free tensor equations between two different stress measures, using the relation between their
components in the principal axes.

Hence, some equations will be derived for the principal components of conjugate stresses for not only the
Seth—Hill strain measures including logarithmic strain, but also for all the strain measures in the form of
Eq. (1.4). Using these relations, several basis free equalities are obtained, some of which have been obtained
already through a different approach.

In this work, the index notation is not used unless stated otherwise. Second order tensors are in bold
capitals and fourth order tensors are in italic bold capitals.

In what follows, two different approaches are adopted to obtain the formulas for the principal com-
ponents of the stresses. The method presented in Section 3 is based on the arbitrariness of Lagrangian spin
tensor components, which is less general since there are instances that some of the components of the spin
tensor are not well defined. The second one presented in Section 4 is based on the tensor algebra and is quite
general and covers all cases.

2. Basic relations

Consider a deforming body, with F denoting the deformation gradient at a point inside it with
det(F) > 0. The polar decomposition theorem states that F may uniquely be decomposed as

F=RU = VR (2.1)

where U and V are the right and left stretch tensors, respectively, and are both positive definite symmetric
tensors, and R is a proper orthogonal rotation tensor. Here, N; and n; are the principal axes or eigenvectors
of U and V, respectively, and

Therefore, Eq. (2.1) states that a material finite deformation can be viewed as a pure stretch along a specific
orthogonal Lagrangian triad &, followed by a rigid rotation of this orthogonal triad into another specific
orthogonal Eulerian triad n;, or conversely, a rigid rotation followed by a pure stretch.

The eigenvalues of U and V called principal stretches, are denoted by A;, 4, and A;. The principal in-
variants of U and V are

I =1+ 2+ Js
I = Jida + Jals + I3y (2.3)
I = 47074

The Cayley—Hamilton theorem declares that every tensor satisfies its own characteristic equation. That is,
for the second order tensor U
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U — U + 11U — [T = 0 (2.4)

During the deformation, the continually changing Lagrangian and Eulerian triads and the rigid rotation of
the material will have the spins Q" QF and QF. Some basic relations between these spin tensors are
(Mehrabadi and Nemat-Nasse, 1987)

N; = Q"N (2.5)

ill‘ = QE}’I,' (26)

R = QFR (2.7)
In these relations, Q’s are anti-symmetric spin tensors which are related through

QF = OF + RQ'RT (2.8)
According to (2.5), the material time derivative of (1.2) and (1.4) can be written as

U=> iN@N,+Q"U-UQ" (2.9)

FU) =D Af ()N @ N; + Q-f(U) — f(U)Q" (2.10)

where ()’ means derivative with respect to A.
Some of the well-known relations of the Seth—Hill strain measures with their conjugate stresses are as
follows (Hill, 1978; Guo and Dubey, 1984)

(1) Green’s strain and second Piola—Kirchhoff stress tensors
1
E® =2 (U ~1); T% =¥ 'eF " (2.11)

(i1) Nominal strain and Jaumann stress tensors, alternatively called Biot strain and stress tensors (Ogden,
1984)

EV=U-L TW=4T?U+UT?) (2.12)
(iii) The conjugate pairs T"Y and EY (Guo and Man, 1992)
E-V=1-U"; 1Y =412Uu U T?) (2.13)
(iv) Almansi strain and the weighted convected stress tensors
1
ECY =2(I1-U7); T = IlIF'oF (2.14)

(v) Logarithmic strain E© = In(U) and its conjugate T (Hoger, 1987).
(vi) Seth—Hill conjugate stresses with opposite index signs (Farahani and Naghdabadi, 2000)

T = U'T"U” (2.15)

3. Relations between conjugate stresses of the strain measures f(U)

In this section, the relations between the stress tensors energetically conjugate to f(U) defined in (1.4),
are obtained. Then, the results will be used to find similar equations for the stresses conjugate to the Seth—
Hill strain tensors and the logarithmic strain InU.
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Considering a deforming body in the current configuration, let the stress measure conjugate to f(U) be
T'. Writing the stress tensor T' in the orthonormal basis N;, we have

T =) T/N.®N, (3.1)
ij

where Tfj are the principal components of the tensor T'. According to (1.1), the power or the rate of change
of internal energy per unit reference volume of a deforming body can be written in terms of two different
strain tensors f(U) and g(U), and their conjugate stresses T' and T¢

T : 7(U) = T¢ : g(U) (3.2)

where g() is also a smooth function which satisfies the same conditions as f'() does. Substitution of (2.10)
and (3.1) into (3.2) yields

< D TN @ N;) : ( > (rGanio M) + Q@ (u) - f(U)QL>

1

= (ZT%«M ® M) : (Z (hig' G @ ;) + Qg(U) - g<U>9L> (3.3)
ij i
Consider the spin tensor Q" presented in the principal axes N; such that

Q" =Y QN N, (34)

ij

All the tensors involved in (3.3) are now defined in the principal axes. Therefore, substituting (1.4) and (3.4)
into (3.3) and rearranging the equation result in

S {ar T - g o)+ 3 { Q{1 (r () - £ () ~ T (e(h) — g(2) } | = 0 (3.5)

Since in Eq. (3.5), the stretch rates J; and spin tensor components QiLj are arbitrary, their coefficients must
be equal to zero.

3.1. The case of non-coalescent principal stretches

By setting the coefficients in (3.5) equal to zero, we arrive at the following general equalities

A i=1,2,3
G
LS =) Y

Egs. (3.6) give the relation between the principal components of two different conjugate stress tensors.
These equations will later be used to obtain bases free equations for several stress tensors. Eq. (3.6b) is
obviously only for the case of non-coalescent eigen stretches.

It is noted that this approach to obtain Egs. (3.6) is acceptable only when the Lagrangian spin tensor Q"
is well defined. However, there are situations where some of the components of Q" tend to infinity in an
instant at the boundary of two adjacent intervals where U has a different number of distinct eigenvalues
over the two intervals (Guo et al., 1992). In this case where Q" is not well defined, a different approach can
be used which is explained in Section 4 of the paper.

o (3.6a,b)

1
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3.2. The case of two coalescent principal stretches

From Eq. (3.6) it is observed that coincidence of principal stretches just affects the relation between the
off-diagonal members of the stress components. Therefore, for two coalescent principal stretches, Eq. (3.6b)
can be modified as

f | g(4) — g(4) ) g _ g'(4) <. i .
T ;v,-lgil,- (f()hl) —f(%) T; () T 7 (3.7)

Hence, for two coalescent principal stretches we arrive at

=8, (i =Jj) or (4 = 4)

/() (3.8a,b)
7 = ) = 8) g (i #)) & (4 # %) o
oS = f() o

3.3. The case of three coalescent principal stretches

Similarly, using the same method of Section (3.2), it is concluded that for three coalescent principal
stretches, we have

¢ 8(4) . ) ;
{Tii :f’<)v) Tlg/, ()vl = Ay = }y3 = /L) (39)
That is, in the case of three coalescent principal stretches, all the stress tensors conjugate to the strains in the
form of f(U) defined in (1.4) are coaxial. Egs. (3.6-3.9) will later be used for the special case of the Seth—
Hill satin tensors.

4. General proof for the relation between conjugate stresses

The general proof for Egs. (3.6) is briefly explained in this section. Index notation is not used in this
section unless stated otherwise. Fourth order tensors are in bold italic capitals. The space of all three
dimensional real vectors is denoted by Vect, and the space of all second order tensors which are linear
transformation from Vect into Vect is called Lin. Furthermore, the fourth order tensors constitutes the
space of all linear mappings of Lin into itself, called Lin. The double contraction of a fourth tensor D € Lin
and a second order tensor U € Lin in index notation is defined as

D:U=D;Uye; Qe (4.1)
where ¢;’s are the basis vectors. According to Truesdel and Noll (1965), Gurkin (1981), and Silhavy (1997),

derivatives can be identified as linear transformations. The derivatives of a scalar valued tensor function
a(U) : Lin — IR, and a tensor function f(U) : Lin — Lin in index notation are defined respectively as

ou(U ou(U
Oé(lj ) _ dua(U) = gé[j) e ®e, (4.2)
ag(éj) =0u/(U) = —ag"{ﬁ:f) Qe e e 43)

which show that (4.2) and (4.3) are second and fourth order tensors, respectively. Using the chain rule for
the differentiation in tensor derivatives, we have
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df(U) _of(U) du

T aU dr “4)
Using the spectral decomposition, f(U) can be expanded as
f(U) = Zf(/li)Ni ®N; (4.5)

Assuming that the scalar function 1 is continuously differentiable, according to Prepositions 1.2.6 or 8.1.9
thoroughly explained by Silhavy (1997), we can write

ouf(U): T = ZH,,T;N,- ®N; (4.6)
ij

where Tg. are the components of T' in the principal axes of U as defined in (3.1). The components H;; are
independent of T' obtained as

S(4) = f(4), 1
Hy = g, M 4.7)
f'(4); A=A
Recalling Egs. (3.2) and (4.4), we have
f(U): TN =g(U) : T® (4.8)
of(U) dUy . _(9(U) dU\
( ¢ .E>.T_(6U .dt>.Tg (49)

Because of symmetry of the tensors, it is easy to show that dU/d¢ is commutative in (4.8) as

Hence, since (4.10) holds for every tensor U, it is concluded that
of(U) v _ (V)

AP _ 28\~ .78
0 T U T (4.11)
Therefore, substitution of (4.6) and (4.7) into (4.11), it is concluded that
=S =g er (=)

T f)
i _ 8(k) —g(%)
VoSG =)

which is the same as what was obtained earlier in (3.6) and (3.8).

(4.12)
(i #)) & (i # %)

5. Conjugate stresses of general Seth-Hill strain tensors E®
5.1. The case of non-zero indices
Recalling Eqs. (1.3), we consider the strain measure E® and its conjugate stress T, where the index

number « is not necessarily an integer and can be any non-zero real number. Using Egs. (1.4), for two
arbitrary non-zero real indices o« and f§ we have
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. ., N
SOy =—(=1); () =E(Aﬁ - 1) (5.1)
Making use of (3.6) or (4.12), it is concluded that
T = 2f—=1h), i=1,23
a2 . (5.2a,b)
AR A VI
i J

Egs. (5.2) is exactly the same as (1.8) which had been developed earlier only for integer indices.
5.2. The case of zero index or the logarithmic strain In (U)

To find similar relations between T”), the conjugate stress of the logarithmic strain In(U), and other
Seth—Hill strain conjugates, we have

O =In(; g() = (1) (53)
Again, by making use of (3.6), we arrive at
T = 2T i=1,2,3
10 LA =4 e, oy (5.4a,b)

ij T ocl ;\'i ij
n —_—
(2)
Multiplying (5.4) by N; ® N; and summing over i and j, we arrive at the following basis free tensor equation

TOInU — InUT? = TWE® — E®T® (5.5)

It is noted that Hill (1978) obtained Eq. (5.5) for every conjugate stress and strain pairs.
5.3. The case of equal principal stretches

For the case of three coalescent principal stretches where U = Al and A = A, = /3 = A, from (3.9) it is
concluded that

0) _ qarp(@)
T, = 2T} (5.6)
or in the basis free form

T = T (5.7)

6. Application to basis free tensor equations

The application of the above formulae in deriving basis free tensor equations is presented here which
may be used to obtain basis free relations between any two different stress tensors conjugate to the class of
strains of the form (1.4).
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6.1. The stress T'” conjugate to the logarithmic strain InU, and TV

The expression for the stress conjugate to logarithmic strain has been already obtained in previous works
(Hoger, 1987). Here, we obtain a basis free relation for it through another approach. A basis free relation
will be obtained between T the stress conjugate to the logarithmic strain InU, and the Biot stress tensor
TW. From (5.4) we can write

T = 21; i=1273

T = Lﬁ-/‘ﬁ}); i (6.1a,b)
1 i
! (’1/)

We can expand T in a symmetric basis free form in terms of T
T = 4, TV + 4, (UTY + TVU) + 4,UTVU + 4, (U TV + TOU?) + 45,0 TOU?
+45(U'TVU + UTVU?) (6.2)

It is noted that (6.2) is not the only possible expansion of T in terms of T, Since (6.2) is a basis free
equation, the coefficients 4; can be obtained in any coordinates. We may obtain the coefficients 4, especially in
the principal axes, where U is diagonal and is expressed only in terms of stretches, by comparing (6.1) and (6.2)
on the principal axes. This requires the solution of a 6 x 6 system of parametric equations, and rearranging the
obtained coefficients in terms of the three invariants. Hence, the coefficients of (6.2) may be presented as

4, :% —;‘;.+ILL§(31-111 117 — 4117 (6.3a)
i ln;j
i
LI+ I s
AZ—TZ—ij+E(9III—7II-I+21) (6.3b)
! IHT
Ak
2 I+2 1
Ay == AL —(II -1 —HI)(I* = 3II) (6.3¢)
L A L2
i In-<
A
U~ =gy 200,
t 1n7
Ak
A =2 LY rr—om 6.3
S_Zz—ij+ﬁ( -1 —91I) (6.3¢)
i In-<
Ak
LI+ ,
AhTZ % + o3 UL +21 = I - 1I) (6.3f)
1 lni
i
where i = 1, 2, 3, and
L= (l] — }2)(/12 — /13)(/13 — il) (63g)

In the Eqgs. (6.3), j and k are set by permutation.
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Writing T in terms of T in a basis free form gives rise to more complicated coefficients. For this
purpose we similarly expand TV as

T = BT 4+ B, (UT?” + TOU) + B,UTU + B,(UT” + TOU?) + B;U*TOU?

+ Bs(U'TVU + UT1?) (6.4)
From (6.1) we have
T
T == =123
. 6.5a,b
(%) (6.5.0)

Again comparing (6.4) and (6.5) on the principal axes, solving the resulted 6 x 6 system of equation for B;,
and rearranging them in terms of invariants of U, we arrive at

2111 “n% 1
B =" ks — (B3P -1l -1l — 1P - IP + 1> - 111> — 141 - II* - Il + 41I* + 1511 - 11I*)

L &= (Jy—n) -1

(6.6a)
’1/'

! (A + ) In o !
By = — k 2001 — PP - I17 — 917 - [T - 1T + 41(11° + 3117 — 411% - 11T
= 2 G Tm AL+ 3T) )

(6.6b)
A

5 (/1?+11)1n/1—’ {
By == k -1 — 1D + 91T — 4l - 11 6.6
L (=) +III-L2( I+ ) (6.6¢)

=20 ln% |
B,=- ko 20 -0l — 17117 — 101 - II - 11T + 411 + 911> 6.6d
=12 G B AL+ 9U) (6.6d)

A

2 In=* 1
Bs== k PP —41? +31-111 6.6
d LZ(A,—;L,{)Z 2 * ) (6.6¢)

A

By =— k_ P+ —4I- 1% + 61l -1l 6.6f
6 LZ (2 — 7 ) A * ) (6.6f)

where L is defined in (6.3g).
For the case of coalescent principal stretches, the coefficients take simpler forms and we skip this issue
for the sake of brevity.
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6.2. The Biot stress T conjugate to the nominal strain (U —1), and T'¥

The expression for the Biot stress T!") in terms of second Piola—Kirchhoff stress tensor T is quite well
known. However, it will be obtained here again. From (5.2) we have

Tl(il) = /llT(Z) i= 1727 3

'\g ’ 22
o _ LA e (6.7a.b)
iy 2 /li _ /l] i J
Again, writing TV in terms of T in a basis free form, we have
TV = 4T + 4,(UT? + TOU) + 4;,UTPU + 4, (U T + TOU?) + 45,U0°TOU?

+45(U'TPU + UTPU?) (6.8)
Comparing (6.7) and (6.8) in the principal axes, and solving for the unknowns 4;, we get
1
A1:A3:A4:A5:A6:0; AQZE (69)

which is exactly as (2.12), as expected. If we reciprocally write T® in terms of T(")
T? = B, TV 4 B, (UT" + TPU) + B;UTVU + B, (U*TY + TVU?) + BsUTVU?
+ Bs(U'TVU + UTVU?) (6.10)

following the same procedure, we arrive at
P41 1P 11101

- 11
B 1I(I -1 — 1) (6.11a)
_J2.
B = 1M 6.11b)
HI(I -1 — 1)
P11
B = = 6.11
ST Il — ) (6.11c)
1
B = 11
7] (6.11d)
I
Bs == (6.11¢)
7
Be 1 (6.11f)

)

6.3. The stress tensor T'™ conjugate to the strain (1/m) (U" —1), and T

Relations can be easily obtained for every stress tensor T™ in a similar manner. However, for general m,
the relations become more complicated and it is difficult to write them in terms of the three invariants, but
still possible to write them in terms of stretches in a close form. As an example, the relations will be ob-
tained for m = 3. Writing T® in terms of T in the basis free form, we have

T® = 4, TV 4+ 4, (UTY + TVU) + 4,UTVU + 4, (U TV + TOU?) + 45,0°TOU?
+45(U'TVU + UTVU?) (6.12)
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Comparing (5.2) for « = 3 and = 1 with (6.12) in the principal axis, and solve for A4;, result in

-1

A= (1*-1PP — P -IPP - [T + P - [(IP — 41I1%) + I (2111 — IT)) (6.13a)
1

Ay = e (PP +1r?y —=2r -1 -1l — I - 1I(IP + 1I7) + II° - 1) (6.13b)
~I

A= (I* -1+ -1 — 4 - I - 1+ 12117 — IIP) + 211% - 1) (6.13c)
-1

Ay = (PUP — 1Py ~ 117 - 111 ~ IT*) (6.13d)
-1

As = (Pl + 1417 =20 - J1 -1 = IT) (6.13¢)
1

A5 = (I*-m+r-1° =37 -1 -1 —1-1° +1* - 11T (6.13f)

where
C=nr(r-m—r-m+1Ir) (6.13g)

Expressions for T®) was obtained by Guo and Man (1992) through a different mathematical procedures.
6.4. The case of |a| < 1

Similar relations may be obtained for the stresses with indices less than 1. As an example for o = %, from
(5.2) we have

1
(/2 _ 12, 172\ (D)
T = 3 (/11_/ _|_/1j/ )Tij (6.14)
Multiplying (6.14) by N; ® N; and summing over i and j result in
1
T2 — Z (U'V2T® £ T2 6.15
5 ( + ) (6.15a)
or in general, for every o
1
T® — 3 (U“T(Z“) + T(z“)U“) (6.15b)

Alternatively, we can write T!/? in a basis free form as
T2 = 4, TW + 4, (UTY + TOU) + 45UTVU + 4, (U TV + TVU?) + 450 TOU?
+45(U'TVU + UTV?) (6.16)
from comparison of which with (6.14) in the principal axes of U, we can obtain 4; as
A3 =45 =A4¢ =0
and

VPRV EYP

Ay =22
YT Ll — I

(6.17a)
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J
Ay= 272 (6.17b)
2(Iiplhyjy — 111 ,)

-1
2(hplhp — 1))

(6.17¢)

Ay =
where 1y, 11, and III,, are the invariants of U2,
Finally, it is noted that the tensor expansion forms like (6.2), (6.4), (6.8) etc., are not unique and the
unknown coefficients for all forms of expansion may be obtained in a similar manner.

7. Conclusions

In this work, general relations are found between two different stress tensors, conjugate to a class of
strain measure tensors f(U) defined in (1.4). The approach is based on the definition of Hill’s principal
axis method and energy conjugacy notion. The equations are first obtained between the principal com-
ponents of the stresses based on two approaches explained in Sections 3 and 4, the latter of which, based
on tensor algebra is quite general. These equations are then applied to find relations between conjugate
stresses of the Seth—Hill strain tensors E™ as a subset of f(U). The derived equations hold not only for
integer but also for real indices m including zero, which corresponds to the logarithmic strain tensor In(U)
and its conjugate stress T”.. The equalities are obtained for distinct as well as coalescent principal
stretches. Using the relations obtained for the principal components of conjugate stresses, basis free
equations are then derived between several conjugate stresses. The basis free tensor equations between
two conjugate stresses is derived through the comparison of the relations between their components in the
principal axes with a possible tensorial relation between the stresses expanded in the principal axes where
U is diagonal.
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